Lecture #3— NUTS AND BOLTS OF OXIDE MBE: Composition Control and Calibration Darrell G. Schlom # Nuts and Bolts of Oxide MBE How to grow your favorite oxide by MBE? - Lecture #2—Growth Conditions, Sources, and Crucibles - Lecture #3—Composition Control and Calibration - Lecture #4—Epitaxy, Substrates, and Crystal Growth # How to Calibrate Growth Rate - Shadow Mask and Surface Profilometer - Quartz Crystal Microbalance - Ion Gauge - RHEED Oscillations - Shuttered RHEED Oscillations - Rutherford Backscattering Spectrometry - Mass Spectrometer - Atomic Absorption Spectroscopy - Atomic Emission Spectroscopy - X-Ray Reflectivity, Ellipsometry, ... # **Composition Control** - Adsorption-Controlled Growth - Flux-Controlled Growth # Adsorption-Controlled Growth of GaAs ARADIM C.D. Theis, J. Yeh, D.G. Schlom, M.E. Hawley, and G.W. Brown, Adsorption-Controlled Growth of PbTiO₃ by Reactive Molecular Beam Epitaxy," *Thin Solid Films* **325** (1998) 107-114. # Adsorption-Controlled Growth of PbTiO₃ ARADIM C.D. Theis, J. Yeh, D.G. Schlom, M.E. Hawley, and G.W. Brown, 'Adsorption-Controlled Growth of PbTiO₃ by Reactive Molecular Beam Epitaxy," *Thin Solid Films* **325** (1998) 107-114. # Adsorption-Controlled Growth of PbTiO₃ # Adsorption-Controlled Growth of #### Plumbites - PbTiO₃ C.D. Theis et al., J. Cryst. Growth **174** (1997) 473-479. - PbZrO₃ (unpublished) #### Bismuthates - Bi₂Sr₂CuO₆ S. Migita *et al.*, Appl. Phys. Lett. **71** (1997) 3712-3714. - Bi₄Ti₃O₁₂ C.D. Theis et al., Appl. Phys. Lett. **72** (1998) 2817-2819. - BiFeO₃ J.F. Ihlefeld *et al.*, *Appl. Phys. Lett.* **91** (2007) 071922. - BiMnO₃ J.H. Lee *et al.*, *Appl. Phys. Lett.* **96** (2010) 262905. - $BiVO_{4}$ S. Stoughton et al., APL Materials 1 (2013) 042112. - Bi₂Sn₂O₇ and Bi₂Ru₂O₇ (unpublished) #### Ferrites - LuFe₂O₄ — C.M. Brooks *et al.*, *Appl. Phys. Lett.* **101** (2012) 132907. # Adsorption-Controlled Growth of #### Ruthenates - SrRuO₃ D.E. Shai et al., Phys. Rev. Lett. **110** (2013) 087004. - **Sr₂RuO₄** and **Ba₂RuO₄** B. Burganov *et al.*, *Phys. Rev. Lett.* **116** (2016) 197003. H.P. Nair *et al.*, *APL Mater.* **6** (2018) 101108. - CaRuO₃ H.P. Nair *et al.*, *APL Mater.* **6** (2018) 046101. - Ca₂RuO₄ (unpublished) #### Iridates - Ba₂ rO₄ M. Uchida *et al.*, *Phys. Rev. B* **90** (2014) 075142. - SrirO₃ and Sr₂irO₄ Y.F. Nie *et al.*, *Phys. Rev. Lett.* **114** (2015) 016401. #### Stannates - **BaSnO₃** H. Paik *et al.*, *APL Materials* **5** (2017) 116107. - Other - EuO R.W. Ulbricht *et al., Appl. Phys. Lett.* **93** (2008) 102105. # Adsorption-Controlled Growth of #### Titanates by MOMBE - SrTiO₃ B. Jalan et al., Appl. Phys. Lett. 95 (2009) 032906. - GdTiO₃ P. Moetakef *et al.*, *J. Vac. Sci. Technol. A* **31** (2013) 041503. - BaTiO₃ Y. Matsubara *et al.*, *Appl. Phys. Express* **7** (2014) 125502. - CaTiO₃ —R.C. Haislmaier *et al.*, *Adv. Funct. Mater.* **26** (2016) 7271. #### Vanadates by MOMBE - LaVO₃ —H.-T. Zhang et al., Appl. Phys. Lett. **106** (2015) 233102. - (La, Sr) VO₃ M. Brahlek *et al.*, Appl. Phys. Lett. **109** (2016) 101903. #### Stannates by MOMBE - BaSnO₃ — A. Prakash *et al.*, *J. Mater. Chem. C* **5** (2017) 5730 . # Growth of Bi₄Ti₃O₁₂ by MBE D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, and X.Q. Pan, *Mater. Sci. Eng. B* 87 (2001) 282-291. # Adsorption-Controlled Growth of Bi₄Ti₃O₁₂ # Adsorption-Controlled Growth of Bi₄Ti₃O₁₂ Bi₄Ti₃O₁₂ TiO₂ Bi₂O_{2.33} # Adsorption-Controlled Growth of BaSnO₃ ### Adsorption-Controlled Growth of EuO Eu Flux = 1.1×10^{14} Eu atoms/(cm² s), $T_{\text{sub}} = 590$ °C EuO film thickness (from RBS) after 30 min # Adsorption-Controlled SrTiO₃ FIG. 3. (Color online) Out-of-plane lattice parameter as a function of TTIP/Sr BEP ratio for epitaxial SrTiO₃ films grown on (001)SrTiO₃ at (a) 800 °C, (b) 725 °C, and (c) 700 °C. All films were grown using an oxygen BEP of 8×10^{-6} torr. The darker gray-shaded region shows the growth window for stoichiometric films with a lattice parameter that is equivalent to that of the substrate at each temperature. MOMBE Sources Sr Ti(OC₃H₇)₄ Oxygen Plasma B. Jalan, P. Moetakef, and S. Stemmer, *Applied Physics Letters* **95** (2009) 032906. # Single-Phase Field of GaAs vs. PbTiO₃ M.A. Eisa, M.F. Abadir, and A.M. Gadalla, Transactions and Journal of the British Ceramic Society **79** (1980) 100–104. R.L. Holman, *Ferroelectrics* **14** (1976) 675–678. #### PbTiO₃ # Single-phase film does not imply stoichiometric film Phase Diagrams for Ceramists, Vol. 9, edited by G.B. Stringfellow (American Ceramic Society, Westerville, 1992) p. 126. #### GaAs Fig. 8337—GaAs solidus curve. Curves represent the calculated deviations from stoichiometry for solid GaAs. A. I. Ivashchenko, F. Ya. Kopanskaya, and G. S. Kuzmenko, J. Phys. Chem. Solids, 45 [8-9] 871-875 (1984). # III-V Phase Diagrams FIG. 2. The calculated solidus of gallium arsenide showing the catastrophic deviation from stoichiometry at low temperature under arsenic-rich conditions. Arrow marks the congruent point. FIG. 7. Calcuated InAs solidus. Arrow marks the congruent point. Data points: Bublik *et al.* (O). FIG. 3. Calculated GaP solidus. Arrow marks the congruent point. Exmental data: Jordan *et al.* (\bigcirc); Morozov *et al.* (\square). FIG. 8. Calculated InP solidus. Arrow marks the congruent point. Data points: Morozov *et al.* (Ref. 34) (O). FIG. 5. Calculated GaSb solidus. Arrow marks the congruent point. # Challenge What if the oxide you desire cannot be grown by adsorption-control? # **Composition Control** - Adsorption-Controlled Growth - Flux-Controlled Growth # Reflection High-Energy Electron Diffraction (RHEED) Oscillations FIG. 1. Schematic diagram of RHEED geometry showing the incident beam at an angle θ to the surface plane; azimuthal angle φ . The elongated spots indicate the intersection of the Ewald sphere with the 01, 00, and $0\overline{1}$ rods. B. Bölger and P. K. Larsen Review of Scientific Instruments 57 (1986) 1363-1367. B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B Bölger, Surface Science 168 (1986) 423-438. monolayers deposited # Conventional RHEED Oscillations # Conventional RHEED Oscillations BaTiO₃ La₂CuO₄ YBa₂Cu₃O₇ (C) TiO₂ BaO TiO₂ BaO TiO₂ BaO LaO LaO CuO₂ LaO LaO CuO₂ LaO CuO₂ BaO Cu-O BaO CuO₂ CuO₂ BaO _ Cu-O BaO CuO₂ Time(arb.unit) # Migration-Enhanced Epitaxy Migration-Enhanced Epitaxy of GaAs and AlGaAs Yamaguchi Y. Horikoshi, M. Kawashima, and H. **Iapanese Journal of Applied Physics 27** GaAs or (Al,Ga)As # Shuttered RHEED to get Sr:Ti = 1:1 SrTiO₃ Oscillations of the central diffracted rod as the Sr and Ti RADIM are deposited in a sequential manner ## Beat Frequency for Sr:Ti = 1:1 Absolute SrTiO₃ # How we do it - Use Quartz Crystal Microbalance to Get Fluxes Close (~10% accuracy) - Use Shuttered RHEED Oscillations (analogous to MEE of GaAs) - Yields Sr:Ti Relative Incorporation Ratio (~1% accuracy) - Yields Absolute Monolayer Dose for SrO and TiO₂ (~1% accuracy) - Works for many Perovskites # **Shuttered RHEED Oscillations** # Shuttered RHEED Oscillations **B-Site Rich** # **Shuttered RHEED Calibration** SrTiO₃ +10% Sr -10% Sr - Deposition of superlattices and layered structures requires precise control to achieve perfect layer termination - Calibration of beam flux with quartz crystal monitor not precise enough - Intensity variation of electron diffraction (RHEED) pattern during deposition of one unit cell can be used for flux calibration - Very time-consuming process, calibration can easily take 8 hours # Examples of Oxides we Grow